2010년 4월 28일 수요일

멀티 쓰레드 프로그래밍이 어려운 까닭

보통 멀티 쓰레드 프로그래밍 하면 손사레부터 치는 사람들이 대단히 많다. 이 쪽에 대해 나름 공부를 하고 있다 생각하지만 아직까지 버그가 없으면서 높은 병렬성을 가진, 어느 정도 이상 규모를 가진 프로그램을 일반적인 순차적 프로그래밍을 짜듯 쉽게 만들 자신은 없다. 팀 스위니 같은 천재조차도 멀티 쓰레드 프로그래밍은 쉽지 않다고 고백하는 것을 보면 현재 주된 개발 방식 어딘가에 동시성과 맞지 않는 근본적인 한계가 존재한다는 추측을 하게 된다.

 

멀티 쓰레드 프로그래밍이 어려운 까닭을 파고 들어가면 현재 가장 주류를 이루고 있고 또 성공적으로 적용 중인 구조적 프로그래밍이라는 개념 자체가 동시성 프로그래밍에 적합하지 않다는 점에 그 근본적인 원인이 있음을 알게 된다.[footnote]물론 이게 goto를 쓴다고 해결된다는 의미는 절대 아니다.[/footnote] 이러한 원인을 알기 위해서는 우선 구조적 프로그래밍에 대한 이해가 필요하다.

 

구조적 프로그래밍이란 프로그램의 논리를 작은 단위로 나누어 생각할 수 있도록 하위 구조(sub-structure)라는 논리적인 단위를 제공한다. 이러한 하위 구조의 가장 작은 단위는 일반적으로 문장(statement)인데, 구조적 프로그래밍에서는 이들을 순차적으로, 혹은 필요에 따라 비순차적으로 수행하도록 적합한 제어 구조를 제공함으로써 작은 하위 구조로 부터 더 큰 프로그램을 조립해나간다.

 

여기에서 중요한 것은 프로그램의 문맥이 특정한 상태에서 어떤 하위 구조로 진입했을 때, 프로그램 작성자가 그 결과를 결정적으로(deterministic) 예측할 수 있다는 점에 있다. 하위 구조의 동작 결과를 알고 있기 때문에 이러한 하위 구조를 조립한 상위 구조들의 동작 결과도 미리 예측 가능하며, 이러한 전제 하에 상방식(bottom-up), 혹은 하방식(top-down) 설계가 가능해진다. 이 때 각각의 하위 구조가 다른 구조에 영향을 적게 줄 수록 유지 보수가 쉬워지는 경향이 있는데, 이를 위해 그 범위를 가능한 하나의 객체로 좁히기 위한 노력들이 훗날 객체 지향 패러다임에 상당한 영향을 주었다고 한다.

 

이 구조적 프로그래밍에서 가장 강력한 도구를 들라면 역시 서브루틴, 혹은 메쏘드이다. 잘 짜여진 서브루틴이라면 전제 조건(pre-condition)과 사후 조건(post-condition), 부가 효과(side-effect)가 명확하게 정의될 수 있다. 전제 조건이란 서브루틴에 진입하기 이전 프로세스[footnote]여기에서 프로세스란 시스템 프로그래밍적 관점에서의 그 용어가 아닌, 프로그램의 인스턴스로써의 프로세스를 의미한다.[/footnote]의 상태가 가져야 하는 전제 조건들을 의미하며, 사후 조건이란 서브루틴을 수행한 이후 반환되는 결과 값 및 변화한 프로세스의 상태이다. 부가 효과란 해당 서브루틴의 수행으로 인해 발생한 프로세스의 변화 자체를 의미한다. 현재의 컴퓨터 모델에서는 서브루틴을 수행하는 사이에 발생한 메모리 영역의 변화 일체가 서브루틴 수행의 부가 효과라고 볼 수 있다.[footnote]물론 이에 한정되지는 않는다. I/O도 부가 효과라고 볼 수 있으니까.[/footnote]

 

헌데 기존의 프로그램에 동시성이라는 개념이 등장하는 순간 기존의 이런 도구들이 전부 의미가 없어진다. 두 개 이상의 실행 문맥이 동시에 한 메모리 영역을 읽고 쓰는데에 아무런 제약이 가해지지 않기 때문이다. 헌데 서브루틴이건 하위 구조이건 수행 자체에는 시간이 필요하고, 그 사이에 한 메모리 영역을 두 쓰레드가 동시에 조작하려 시도하면 비결정적(non-deterministic)인 결과, 이른바 데이터 레이스가 나오게 된다.

 

문제는 이 뿐만이 아니다. 설령 데이터 레이스가 존재하지 않는다고 하여도 싱글 쓰레드와 멀티 쓰레드 사이에는 프로그래밍 방식에 있어 현격한 차이가 있다. 만약 단일 쓰레드가 특정 객체를 수정하는 서브루틴를 수행한다 하면 일반적으로 진입 이전과 이후의 객체 상태는 모두 의미 있는 상태일 것이다. 이러한 가정 하에 구조적 프로그래밍이 가능해지는 것이다. 그러나 두 개 이상의 쓰레드가 그러한 서브루틴을 수행한다면 수정이 완전히 이루어지지 않는 불완전한 상태의 객체에 접근하게 될 가능성이 있다. 동시에 접근될 가능성이 있는 모든 객체에 대해 가능한 모든 불완전한 상태에 대한 대비를 해야 한다는 것이다. 이러면 당연히 프로그램의 복잡도가 현격하게 상승하게 되며, 이는 구조적 프로그래밍의 강점 하나가 그대로 사라지는 것을 의미한다.

 

여기에서 구조적 프로그래밍의 가장 큰 전제가 무너지는 것이다. 구조적 프로그래밍에 있어 그 결과를 신뢰할 수 없는 하위 구조는 존재 가치가 없으며, 그러한 하위 구조를 단 하나 가지고 있는 것 만으로도 해당 프로그램은 전혀 신뢰할 수 없는 프로그램이 되고 만다. 그렇지 않은 하위 구조를 짜는 것은 싱글 쓰레드에 비해 몇 배의 노력이 들어가며, 뒤에서도 설명하겠지만 특정 조건을 만족하지 않는 이상 이러한 하위 구조들은 서로 조합이 불가능하다는 치명적인 문제가 존재한다.

 

그간 연구자들이 이에 대해 손을 놓고만 있었던 것은 아니다. 컴퓨터 과학계에서는 수십년 전부터 동시성에 대한 연구가 시작되었고, 특히나 CPU 자원의 공평한 분배가 중요한 운영체제론에서는 동시성에 대한 연구가 광범위하게 진행되어 왔다. 쓰레드나 락, 데이터 레이스 등의 개념을 프로그래밍 자체보다는 운영체제나 시스템 프로그래밍 등의 테마를 공부하며 배우는 사람이 많은 것은 바로 이런 까닭이다.

 

가장 먼저 나온 방안은 (그리고 현재까지 가장 널리 통용되는 방안은) 필요한 경우 락을 이용하여 프로그램 수행을 직렬화하는 것이다. 간단히 말해 의미 없는, 불완전한 상태의 객체에 관한 서브루틴이 수행될 가능성이 있는 경우 진입 지점에 적당히 락을 걸어 두 개 이상의 쓰레드가 동시에 객체를 수정하지 못하도록 막는 것이다. 이 방법은 구현이 쉽고, 가장 기계 친화적인 방식이기 때문에 아직까지 널리 쓰인다.

 

그러나 구조적 프로그래밍과 이 방식이 잘 맞느냐를 묻는다면 회의적이다. 구조적 프로그래밍은 말 그대로 하위 구조의 조합을 통해 프로그램을 만들어가지만, 일반적으로 락 기반 프로그래밍은 객체 단위로 락을 할당한다는 점을 생각해보면 이 방식은 런타임에 존재하는 실제 객체의 상태에도 다분히 의존적이다. 기존에는 주로 하위 구조들이 이루는 프로그램의 구조에 대해서만 신경쓰면 됐다면 [footnote]꼭 그렇지만은 않지만, 대부분은 좋은 설계에 의해 해결된다.[/footnote] 이제는 여기에 런타임의 프로세스 상태라는 새로운 차원까지 치밀하게 신경써야 한다. 이로 인해 락을 이용한 하위 구조들끼리는 별 다른 조치 없이 그대로 조합하는 것은 불가능하며, 악명 높은 동시성 버그인 데드락이 발생하는 까닭의 99%는 여기에 있다. [footnote]이 뿐만 아니라 lock contention, lock convoying등 락으로 인한 문제점은 셀 수도 없이 많다.[/footnote]

 

이런 방식 대신, 프로세서가 제공하는 원자적 명령어[footnote]Compare and swap등.[/footnote]를 통해 서브루틴을 수행하는 구간에 대해 해당 객체가 항시 유효한 상태임을 보장하는 방식인 이른 바 Lock-free, Wait-free로 대변되는 non-blocking 동기화 기법도 존재한다. 여기에서는 보통 프로그램의 복잡도를 제어 가능한 수준으로 낮추기 위해 선형화(Linearization)라는 개념을 도입한다. 선형화의 아이디어는 간단히 말해 특정 쓰레드가 특정 객체에 대한 작업를 수행한다 치면 다른 쓰레드에 있어서는 이 작업이 한 순간에 일어난 것처럼 보이도록 하자는 것이다. 데이터베이스의 트랜잭션과 어느 정도 유사한데, 이런 방식으로 접근을 하면 동시적으로 수행되는 각 작업들 사이의 선후 관계를 판별하는게 가능해지고, 또한 락을 이용한 방법과는 달리 하위 구조끼리의 조합도 가능해진다.

 

허나 non-blocking 동기화 기법은 기존의 알고리즘을 선형화시켜야 한다는 제한이 있기 때문에 코딩하기가 대단히 까다롭다. 이는 현대 프로세서들이 제공하는 원자적 연산 명령들의 한계 때문인데, 대부분의 경우 근접해있는 64비트 변수 두 개를 원자적으로 바꾸는 명령 정도가 한계이다. 이러한 명령만을 이용하여 프로그래밍하는 것은 락을 이용한 프로그래밍에 비해 절대 쉽다고 할 수 없다. 그렇기 때문에 대개의 경우는 아주 기초적이고 자주 사용되는 자료구조에 한해 이러한 프로그래밍 기법을 사용하는 것이 대부분이다.

 

그러나 선형화라는 아이디어 자체는 상당히 유용하기 때문에 동시성 모델을 만들고 사고하는데 있어 (락을 이용하는 경우에도) 쓸만하며, 또한 하위 구조간 조합이 아무 제약 없이 가능하다는 강점 덕분에 구조적 프로그래밍과 상당히 궁합이 잘 맞는다. 여기에서 더 나아가 특정 코드 구간에서 일어나는 모든 연산이 원자적으로 일어난다는 것을 보장할 수 있으면 어떨까? 이런 아이디어에서 Transactional memory라는 개념이 등장한다. Transactional memory란 간단히 말해 특정 수행 구간에서 일어난 메모리 변화를 원자적으로 반영시키는 개념으로, 메모리 버젼의 트랜잭션이라고 생각하면 된다. Transactional memory가 구현되면 모든 코드를 아주 쉽게 선형화 할 수 있게 되므로 동기화에 대한 시름거리를 하나 덜어버리는 셈이 되나, 안타깝게도 아직까지는 이를 실용적인 수준까지 구현한 사례는 존재하지 않는다.

 

현재까지는 어느 쪽이든 그 난이도가 낮지 않다. 이 외에도 수많은 방법들이 제안되었고 또 제안되고 있지만, 아직까지는 확실하게 은탄환이라 불릴 만한 해법은 나오지 않은 상태이다. 병렬, 동시성 프로그래밍은 로직 자체를 고민하는 것도 만만치 않은데 여기에 이런 다양한 문제들이 엮이면서 그 난이도가 살인적인 수준까지 올라간다. 마땅한 방법이 없는 현재로써는 이를 하나 하나 공부하며 그때 그때 맞는 방법론을 찾아 적용하는 수 밖에 없어 보인다.

2010년 4월 26일 월요일

std::unique_ptr

C++ 차기 표준인 C++0x에서는 다양한 언어적 차원의 기능과 라이브러리들이 추가되었는데, 라이브러리 중 unique_ptr라는 상당히 흥미로운 물건이 추가되었다. 이 클래스의 역할은 기존의 auto_ptr 클래스를 대체하는 것인데, 이를 이해하려면 auto_ptr에 대해 어느 정도 이해가 필요하다.

 

auto_ptr는 C++ 코딩의 원칙 중 하나인 RAII[footnote]Resource aquisition is initlaization, 자원의 획득은 객체의 생성과, 해제는 객체의 소멸과 일치시키라는 의미로, 컴파일러가 자동으로 관리해주는 객체의 생명 주기와 자원의 생명 주기를 일치시켜 컴파일러로 하여금 자원을 자동적으로 관리하도록 하는 정책을 의미한다.[/footnote]를 구현하기 위해 표준 라이브러리에 존재하는 클래스로, auto_ptr 객체가 정의된 스코프를 벗어나면 해당 auto_ptr에 저장된 객체의 해제를 보장하는 역할을 한다. 간단히 말해 스마트 포인터인 셈이다. 안 그래도 복잡한 언어인 C++에서 이러한 스마트 포인터의 존재는 코드의 복잡도를 낮추는데 무척 중요한 역할을 한다. 자원 할당 및 해제까지는 조심스럽게 코딩함으로써 어찌 할 수 있겠으나, 예외 안전성의 영역까지 가면 자원을 사람이 일일히 관리하기가 거의 불가능한 수준이 되기 때문이다. [footnote]여담이지만 C++에서 delete란 만악의 근원으로, 가능하면 컴파일러가 알아서 삽입하도록 코드를 짜는게 좋다. C++에서는 그 방법으로 제안되는 것이 스마트 포인터이다.[/footnote]

 

헌데 auto_ptr 클래스의 동작을 잘 보면 상당히 특이하다. 일반적으로 복사 생성자와 대입 연산자는 동일한 객체를 두 개 만든다는 의미에 맞게 동작하는데, 이 경우는 포인터의 소유권을 이전하는 방식으로 동작한다. 이를테면 auto_ptr 객체 a, b가 있을 때 a에 b를 대입하면 a가 가리키고 있던 객체는 해제되고 b에 있는 객체를 가리킨다. 그리고 b에는 널 포인터가 들어간다. 결과적으로 한 포인터를 가리키는 auto_ptr 객체는 동시에 하나만 존재하게 되어 이중 해제가 되지 않음을 보장하는 것이다. (물론 잘못 쓰면 충분히 가능한 일이지만)

 

문제는 STL 컨테이너를 사용하는 경우 컨테이너에 들어가는 객체들에 요구되는 조건 중 하나가 복사 생성자와 대입 연산자가 동일한 객체를 두 개 만든다는 의미를 가져야 하는 것이다. 헌데 auto_ptr는 이러한 조건을 지키지 않기 때문에 STL 컨테이너에 사용하는 경우 내부에서 이루어지는 대입, 복사 과정에서 가리키는 포인터가 마구마구 해제되어 버리는 불상사가 발생한다. 그렇기 때문에 표준에서 auto_ptr를 STL 컨테이너를 구체화시키기 위한 타입으로 사용하는 것을 아예 금지하고 있으며[footnote]관련 내용으로는 여기를 참조하자.[/footnote], boost에서는 아예 복사라는 개념 자체를 제거한 scoped_ptr을 제공한다.

 

C++에서 STL 컨테이너에 담을 수 없는 클래스라면 아무리 좋은 물건이라도 반쪽 클래스일 수 밖에 없다. 이러한 것을 극복하기 위해 소유권을 이전하는 형식이 아닌, 소유권을 나누는 방식의 shared_ptr이 제안된다. 이는 레퍼런스 카운팅 방식으로 동작하는 포인터로 사실상 모든 경우에 대해 포인터를 대체할 수 있으며 대부분의 경우에 대해 멀티 쓰레드 환경과 예외에 대해 안전하고 가리키는 포인터가 없어지는 경우는 해당 자원이 자동으로 해제되기 때문에 무척 유용하다. 순환 참조에 대해서만 조심하면 자바나 C#의 가비지 콜렉터가 부럽지 않을 정도다.

 

그러나 모든 편리함은 그 댓가를 필요로 하는 법이다. shared_ptr은 자체적으로 레퍼런스 카운팅을 제공하지 않는 클래스에 대해서도 동작해야 하기 때문에 각 개체마다 레퍼런스 카운트 값을 저장할 공간을 추가로 가져야 한다. 이 값은 shared_ptr마다 하나가 아니라 가리키는 객체마다 하나씩 필요하므로 새로운 포인터를 가리킬 때마다 추가로 힙 공간을 할당해야 한다는 의미이다. 게다가 shared_ptr의 복사 및 소멸마다 레퍼런스 카운트 값을 조절해야 하는데 이는 쓰레드 안전해야 하므로 비교적 수행 속도가 느린 atomic operation을 이용해야 하며, 이는 전부 힙 공간을 조작하는 행위이므로 캐쉬 지역성에 악영향을 끼칠 우려가 있다. 여기에 추가로 객체 접근을 위해 포인터를 역참조할 때 이 값이 shared_ptr에 저장된다면 shared_ptr의 크기가 2배로 불어나며 레퍼런스 카운트를 저장해두는 곳에 저장한다면 간접 참조를 해야 하므로 메모리 연산이 두 번 일어나는 셈이다.

 

물론 대부분의 경우 shared_ptr의 유용성은 이러한 오버헤드를 충분히 감수하고도 남을만 하지만, 해당 객체의 수명이 아주 명확한 경우까지 shared_ptr을 쓰는 것은 낭비라고 볼 수 있다. 다시 말해 auto_ptr와 shared_ptr 사이의 절충안이 있으면 좋겠다는 의미다. 이를 위해 C++ 표준 위원회에서는 unique_ptr이라는 클래스를 새롭게 도입한다.

 

unique_ptr은 기본적으로 auto_ptr와 유사하게 소유권의 이전에 기반한 동작을 한다. 그러나 일반 복사 생성, 대입 연산이 아닌 C++0x에서 새롭게 추가된 R-value reference를 이용한다는 것이 틀리다. 자세히 들어가자면 무척 긴 내용이라 시시콜콜 설명하진 않겠으나 R-value reference를 이용한 복사 생성와 대입 연산은 의미적으로 값의 복사가 아닌 값의 이동을 뜻한다. [footnote]R-value reference가 도입된 목적이 어차피 곧 무효화될 임시 객체에 대해서는 값을 복사하지 말고 이동시켜서 복사에 따른 오버헤드를 줄이자는 것이기 때문이다.[/footnote] 때 마침 STL 컨테이너에서도 효율성을 위해 내부적인 복사 및 대입 동작은 전부 R-value reference를 이용하도록 바뀌었는데, 일반 복사 및 대입 연산자를 막아 버리는 대신 R-value reference를 이용한 복사 및 대입 연산자만 정의한다면 STL에서도 사용할 수 있는 auto_ptr가 생긴다는 것이 unique_ptr의 의미이다.

 

unique_ptr와 auto_ptr의 차이점은 대충 아래와 같이 정리할 수 있다.

  • 일반 복사, 대입 연산을 막은 대신 R-value reference를 이용함으로써 그 의미가 뚜렷해진다.
  • 또한 STL 컨테이너에서도 사용할 수 있다.
  • 해제자를 따로 지정할 수 있다. (배열의 경우는 템플릿 특수화를 통해 전용 해제자를 이미 정의해놓은 상태이다)

간단히 말해 auto_ptr가 할 수 있는 것은 unique_ptr도 전부 할 수 있으며, 거기에 다양한 기능이 추가된데다 raw pointer에 비해 추가적인 오버헤드도 없는 스마트 포인터라 할 수 있다. 앞에서 말한 auto_ptr를 대체하기 위한 클래스라는 것은 바로 이런 의미이다. 다만 의미적인 뚜렷함과 안전한 사용을 위해 대부분의 암시적인 변환이 막혀 있고, 일반적인 대입 및 복사가 막혀 있으므로 unique_ptr 끼리의 대입에는 std::move 함수를 명시적으로 사용해야 하는 등 코딩량이 다소 늘어난다는 불편함이 있으나, 안전한 코딩을 위해서라면 이 정도는 충분히 감수할 만 하다.

 

unique_ptr의 경우 개인 프로젝트인 C--에서도 상당히 유용하게 쓰고 있는데, 이를 잘만 쓰면 아무런 오버헤드 없이 유효 범위가 확실한 객체에 대해 delete를 전부 제거할 수 있으며, 나머지도 shared_ptr을 이용하여 제거할 수 있다. 유일하게 예외가 있다면 union을 쓰는 경우인데 (union의 멤버는 생성자를 가질 수 없다) 이 경우는 사용자가 따로 래퍼 클래스를 만들어야 한다.

 

개인적으로는 boost의 intrusive_ptr[footnote]shared_ptr과 비슷하게 레퍼런스 카운트를 하지만 이 녀석은 개체 자신이 레퍼런스 카운트 값을 유지해야 한다는 제약이 있다. 물론 퍼포먼스 측면에서는 그만큼 이득이 있다.[/footnote]의 인터페이스를 좀 더 다듬어서 오버헤드가 적은 shared_ptr의 모양새로 표준에 도입해보는 것도 좋지 않을까 생각하는데, 표준화 위원회는 이 쪽에 관심이 없거나 이 정도면 충분하다고 생각하는 것 같다. 내가 만들어 볼까 생각도 해봤으나 모든 코너 케이스를 고려하면서 안전한 스마트 포인터 클래스를 만드는 것은 그리 만만한 일이 아닐 것 같다.

RVO와 NRVO

컴파일러가 컴파일 시간에 수행하는 최적화는 참으로 다양하다. 의미 없는 코드를 삭제하는 Dead code elimination 같은 기본적인 테크닉부터 함수 내부 코드만이 아니라 함수 사이의 관계까지 최적화를 하는 Interprocedural optimization까지 많은 종류의 최적화가 수행된다. 특히나 템플릿을 적극 활용하는 스타일의 C++ 코딩에서는 많은 변인들이 컴파일 시간에 정적으로 결정되기 때문에 이러한 최적화의 혜택을 많이 받는다. [footnote]예를 들어, VS의 STL vector 구현을 보면 값 하나 참조하는 데에만 함수가 몇 번씩 호출되어 콜스택이 몇 중으로 쌓이는데 최적화된 목적 코드에서는 이 코드들이 전부 인라인되고 상수 브랜칭들도 다 삭제되어 해당 객체의 포인터를 곧바로 가리키는 코드로 바뀐다.[/footnote] 이로 인해 C++의 템플릿을 강력한 유연성과 높은 효율 두 마리 토끼를 함께 잡을 수 있는 것이다.

 

이러한 최적화로 인해 얻어지는 수행 효율의 증대는 크누스 교수님으로 하여금 어설픈 최적화는 모든 악의 근원이다라는 말까지 남기도록 하였다. 그럼에도 불구하고 쪼잔한 우리 프로그래머들은 컴파일러를 믿지 못하고 문장 단위의 최적화를 시도하는 경우가 많은데, 이 중 가장 대표적인 사례를 들라면 함수의 반환값을 복사 대신 참조로 넘기기 위한 다양한 노력이 있다. 스캇 마이어의 Effective C++에서도 함수의 반환값을 참조로 넘기지 말라고 강조를 하지만 복사 생성으로 인해 성능에서 피를 본 적이 있는 사람이라면 이러한 유혹에 빠질 수 밖에 없는 것이다.

 

이를테면 스코프에 대한 개념이 잘 잡혀 있지 않은 초보 프로그래머들이 '참조로 넘기는게 효율이 좋데'라는 말을 듣고 최적화를 하려고 한다. 그런데 그렇게 큰 객체가 아니라 힙에다가 매 번 할당하는 것은 비효율적이고 또 수동 할당 해제 등의 번거로움도 싫다. 그래서 힙에 할당을 하지 않고 그냥 스택에 있는 객체를 이용하려 한다 치면 아래와 같은 실수를 저지를 수 있다.

 

[code cpp]SomeClass& someFunction()<br>{<br>    SomeClass ret;<br>    // Do something...<br><br>    return ret;<br>} [/code]

 

당연히 안 될 말이다. SomeClass의 인스턴스 ret는 해당 함수가 끝나는 순간 그 유효 기간이 다 한다. 자동으로 소멸자가 호출되어 관련 정보를 깨끗하게 정리해버리는 것이다. 이 상황에서 객체 자체가 아닌, 객체의 참조를 반환한다면 대재앙이 일어날 수 밖에 없다. 그렇다면 이건 어떨까?

 

[code cpp]class SomeClass<br>{<br>    // ...<br><br>    SomeObject buffer_;<br>};<br>[/code]

[code cpp]SomeObject& SomeClass::getSomeObject()<br>{<br>    // do Something on buffer_<br>    return buffer_;<br>}<br>[/code]

 

이는 큰 문제 없이 돌아가겠지만, 객체 안의 객체를 반환할 경우에나 사용할 수 있다는, 다시 말해 원본 객체 상태의 일부에 한정되는 객체만 반환 가능하다는 한계점을 가지고 있다. SomeClass에 종속적이지 않은 객체를 만들고 싶은 경우라면 사용할 수 없는 코드인 것이다.

 

그렇게나 효율을 강조하는 언어인 C++에서 이런 문제 하나 제대로 해결을 못하고 결국 무작정 복사를 해야 한다니 무언가 이상하다. 컴파일러 개발자나 C++ 표준 위원회 등이 이러한 내용에 대해 고민을 안 해봤을리가 없다. 그리고 이 문제에 대해 Return value optimization(RVO)이라는 해법을 내놓는다. RVO란 함수가 특정 값을 반환할 때 객체를 생성하고 복사, 소멸시키는 삼중 오버헤드를 단순히 객체 생성 한 번으로 끝내도록 만드는 최적화이다. 우선 아래의 코드를 보자.

 

[code cpp]SomeClass someFunction()<br>{<br>    // Do something...<br><br>    return SomeClass(someArgument);<br>} [/code]

 

이렇게 반환문에 객체 생성문을 명시했다는 것은 실제 반환되는 위치에 곧바로 해당 객체를 생성하여도 의미적으로 볼 때 차이가 없을 것이라는 의미이다. 그렇다면 위의 코드는 아래와 같은 코드로 바뀔 수 있다. (정확하게 아래와 같지는 않다. 단지 이렇게 될 것이라는 것을 말할 뿐이다.)

 

[code cpp]void someFunction(SomeClass& returnTo)<br>{<br>    // Do something...<br><br>    returnTo.SomeClass::SomeClass(someArgument); // Construct SomeClass on returnTo<br>} [/code]

이렇게 반환값 최적화가 일어나면 반환값을 굳이 참조로 넘기지 않아도 효율적인 코드가 생성된다. 헌데 위와 같은 최적화만 가지고는 아무래도 반환하는 객체에 대한 표현력이 생성자에 의해 곧바로 만들어 질 수 있는 익명 객체 수준으로만 한정되기 때문에 아쉬운 점이 있다. 이를 보완하는 최적화 테크닉도 있는데 이는 Named return value optimization(NRVO)으로, 이름을 가진 반환값까지 이러한 최적화의 대상으로 만든다.

 

[code cpp]Object generate()<br>{<br>    Object someObject;<br>    someObject.doSomething();<br>    return someObject;<br>}<br>[/code]

 

이런 코드는 앞서 언급한 RVO만 가지고는 반환값 최적화의 혜택을 받을 수 없는데, NRVO는 이마저 최적화시켜버린다. someObject가 있다고 치면 굳이 someObject를 생성할 필요 없이 반환값을 저장할 변수를 가져와서 그 곳에다가 someObject 관련 작업을 해버리는 것이 포인트이다.

 

[code cpp]void generate(Object& returnTo)<br>{<br>    returnTo.Object::Object();<br>    returnTo.doSomething();<br>}<br>[/code]

 

물론 실제 코드가 이렇게 간단하게 최적화될 수 있다면 고대 컴파일러인 VC 6.0에서부터 구현이 되었을 것이다. 하지만 실제로 사용하는 코드들은 이보다 복잡한 경로를 거쳐 값들을 반환하기 때문에 훨씬 복잡한 알고리즘을 동원하여 최적화를 하는 것으로 보인다. MSDN에 따르면 NRVO는 2005부터 지원을 하고 있다. [footnote]해당 사이트에 NRVO가 적용 안 되는 경우 등이 자세히 설명되고 있으므로 한번 읽어 볼 만 하다.[/footnote]

 

다만 이 최적화의 문제라면 생성자, 소멸자의 호출 횟수가 달라지면서 같은 코드라도 내는 결과가 최적화 여부에 따라 달라질 수 있다는 점인데, 웹에서 본 바에 따르면 이러한 최적화는 C++ 표준에서 이미 허용 가능 한 범위로 정의된 것으로 보인다. 성능이 좋은 컴파일러를 이용하는 경우라면 적어도 값 반환에 따른 복사의 오버헤드를 걱정할 필요는 없다는 이야기이다. 즉, 대부분의 경우 값을 반환하는 루틴을 최적화하는 것은 어설픈 최적화의 범주에 속한다는 의미.

 

기계의 관점에서 쪼잔할 정도로 코드를 최적화하는 것[footnote]이를테면 배열 대신 포인터를 쓴다거나[/footnote]이 과거에는 의미가 있었을지 모르겠으나, 요즘 컴파일러들의 최적화 실력을 보면 어설픈 수준의 최적화는 오히려 성능을 낮추고 코드의 유지 보수를 힘들게 만들 가능성이 높다. 이러한 수준의 최적화는 컴파일러에게 맡기고, 사람은 프로그램의 흐름이나 논리를 면밀하게 검토하여 불필요한 연산을 제거하거나 보다 더 효율적인 알고리즘으로 교체하는 등 기계가 할 수 없는 보다 더 높은 수준에서의 최적화를 해야 할 것이다.

2010년 4월 21일 수요일

C-- 0.01

그 동안 생각보다 바빠서 블로그에 거의 신경을 못 썼는데, 개인적으로 개발 중인 스크립트 언어가 있다.

 

http://code.google.com/p/cmm-lang/

 

주된 개발 동기는 다음과 같다.

  • 나도 Lua 같은 언어를 만들 수 있을까?
  • 차기 표준인 C++0x를 학습해보자.
  • 컴파일러 및 가상 머신을 한번 만들어보고 싶다.

그 외에도 멀티 코어 시대를 대비하여 쓰레드 안전하면서도 효율적인 스크립트 언어 역시 첫 개발 동기 중 하나였으나 내 수준에서는 시기 상조라 판단한데다 C++0x의 쓰레드 라이브러리를 지원하는 컴파일러가 없는 상황이라 차후로 미루어 두었다. 이 목표는 차후로 예정해둔 C/C++ 임베딩용 정적 타이핑 스크립트 언어로 넘길 생각이다. (사실 C--는 이에 대한 선행 학습적인 성격이 크다.)

 

현재 구현한 내용은 C--의 가상 머신과 컴파일러, 그리고 이를 간단하게 테스트해볼 수 있는 인터프리터이다. 사실 가상 머신은 최대한 간단하게 구현하기 위해 노력했기 때문에 큰 어려움이 없었는데, 컴파일러 같은 경우는 C/C++ 계열의 표현식 문법이 꽤 복잡하여 구현에 애를 먹었다.

 

 

언어적인 특징은 다음과 같다.

  • C/C++과 유사한 문법
  • 동적 타이핑
  • First class object로 다루어지는 함수
  • 정적 스코핑에 기반한 클로져 지원
  • 레퍼런스 카운팅에 기반한 가비지 콜렉션

대부분의 기능들은 초보적인 수준으로 지원되며, 이 외에도 코루틴이나 디버깅 등의 기능도 추가 예정에 있다. 다만, 현재 버젼 넘버를 보면 알 수 있겠지만 대단히 불안정하고, 또한 프로토타이핑 단계이기 때문에 대부분 기능들이 비효율적으로, 최대한 간단하게 구현되어 있으며 컴파일러 역시 최소한의 최적화조차 수행하지 않는 단계이다. 이는 나중에 시간이 되는대로 천천히 개선해나갈 생각이다.

 

 

현재 작업 환경은 VS2010/Win32로 그 외의 환경에서는 컴파일이 안 될 것이다. (현재 C++에서는 UTF-8을 wchar_t로 바꾸는 것이 표준 라이브러리 차원으로는 지원되지 않는 것 같아 이를 Win32 API에서 가져다 썼다.) 다만 TextLoader클래스의 역할이 텍스트 파일 -> null terminated wchar_t 배열이므로 이를 적당히 구현한 뒤 main.cpp 파일을 수정하면 gcc4.5에서는 아마 컴파일이 될 것으로 사료된다.